término |
definición |
empezar lección
|
|
Training a model on labeled data to make predictions
|
|
|
empezar lección
|
|
Training a model on unlabeled data to discover patterns
|
|
|
empezar lección
|
|
Training a model to take actions for maximum reward
|
|
|
Supervised vs Unsupervised Learning unsupervised uses unlabeled data empezar lección
|
|
Supervised uses labeled data
|
|
|
Supervised vs Reinforcement Learning reinforcement uses trial and error empezar lección
|
|
Supervised uses labeled data
|
|
|
Unsupervised vs Reinforcement Learning reinforcement uses trial and error empezar lección
|
|
Unsupervised uses unlabeled data
|
|
|
Types of Machine Learning empezar lección
|
|
|
|
|
empezar lección
|
|
Correct output for a given input in machine learning
|
|
|
Model Performance Evaluation empezar lección
|
|
Comparing predictions to ground truth
|
|
|
Supervised Learning Applications natural language processing empezar lección
|
|
|
|
|
Unsupervised Learning Applications empezar lección
|
|
|
|
|
Reinforcement Learning Applications empezar lección
|
|
|
|
|
unsupervised has unlabeled data empezar lección
|
|
Supervised has labeled data reinforcement has no specific guidance
|
|
|
Labeled Data Requirements empezar lección
|
|
Supervised requires labeled data
|
|
|
Unsupervised Learning Limitations may require human guidance empezar lección
|
|
May not discover all patterns
|
|
|
Reinforcement Learning Limitations may not be practical for all tasks empezar lección
|
|
May require a lot of trial and error
|
|
|
Machine Learning Suitability empezar lección
|
|
Depends on problem and data available
|
|
|
empezar lección
|
|
Categorical or numerical output may affect choice of approach
|
|
|
empezar lección
|
|
Structured or unstructured data may affect choice of approach
|
|
|
Labeled Data Requirements empezar lección
|
|
Supervised requires labeled data
|
|
|
empezar lección
|
|
Having a clear objective may affect choice of approach
|
|
|
empezar lección
|
|
Amount of required supervision may affect choice of approach
|
|
|
Model Provided with Correct Output empezar lección
|
|
|
|
|
Model Not Provided with Specific Instructions empezar lección
|
|
|
|
|
Model Learns through Trial and Error empezar lección
|
|
|
|
|
empezar lección
|
|
Make predictions based on labeled data
|
|
|
Unsupervised Learning Goal empezar lección
|
|
Discover patterns in unlabeled data
|
|
|
Reinforcement Learning Goal empezar lección
|
|
Maximize reward through trial and error
|
|
|
Machine Learning to Group Similar Data empezar lección
|
|
|
|
|
Machine Learning to Optimize Performance Over Time empezar lección
|
|
|
|
|