término |
definición |
|
empezar lección
|
|
clk, synchronizacja, zbocza sygnału
|
|
|
transmisja asynchroniczna empezar lección
|
|
|
|
|
|
empezar lección
|
|
Wykrywa zmianę nieparzystej liczby bitów
|
|
|
|
empezar lección
|
|
To suma arytmetyczna wartości liczbowych wszystkich przesłanych bajtów. Wynik dodawania jest doklejany do wiadomości
|
|
|
|
empezar lección
|
|
CRC jest resztą z binarnego dzielenia ciągu danych przez relatywnie krótki dzielnik, zwany generatorem lub wielomianem CRC
|
|
|
|
empezar lección
|
|
Proces przygotowania danych do przesyłu przez zaszumiony kanał. Polega na przekształceniu strumienia bitów tak, by był odporny na zakłócenia fizyczne (np. w światłowodzie). Zwiększa niezawodność kosztem pasma
|
|
|
|
empezar lección
|
|
C - przepustowość kanału [bit/s] W - szerokość pasma [Hz] S/N - moc sygnału/moc szumu (skala liniowa)
|
|
|
|
empezar lección
|
|
stosunek liczby bitów odebranych z błędami do całkowitej liczby przesłanych bitów
|
|
|
|
empezar lección
|
|
Ułatwienie projektowania i zrozumienia sieci, Umożliwienie współpracy różnych producentów, uporządkowanie funkcji sieciowych
|
|
|
|
empezar lección
|
|
Fizyczne przesyłanie bitów (0 i 1) przez medium transmisyjne, Definicja parametrów elektrycznych i mechanicznych. NP Ethernet lub Rs232
|
|
|
|
empezar lección
|
|
Zapewnienie bezbłędnej transmisji ramek ● Wykrywanie i korekcja błędów (CRC) ● Kontrola dostępu do medium (CSMA/CD, CSMA/CA) Działy: ● MAC (Media Access Control) - zarządza dostępem do medium ● LLC (Logical Link Control) - nadzoruje transmisję ramek
|
|
|
MAC (Media Access Control) empezar lección
|
|
Podwarstwa MAC (Warstwa 2 OSI) odpowiada za fizyczne adresowanie (adres MAC) i sterowanie dostępem do medium transmisyjnego. Pakuje dane w ramki, zarządza ich bezkolizyjnym przesyłem (np. CSMA/CD, CSMA/CA) oraz sprawdza poprawność danych (suma kontrolna).
|
|
|
|
empezar lección
|
|
Adresacja, Określenie optymalnej ścieżki przez sieć, Fragmentacja i składanie pakietów
|
|
|
|
empezar lección
|
|
Zapewnienie niezawodnej komunikacji między aplikacjami, Segmentacja danych i kontrola przepływu, Detekcja i korekcja błędów
|
|
|
|
empezar lección
|
|
Zarządzanie nawiązywaniem, utrzymywaniem i kończeniem sesji komunikacyjnych, Synchronizacja i ponowne połączenie po przerwie
|
|
|
|
empezar lección
|
|
Konwersja danych między różnymi formatami, Szyfrowanie i deszyfrowanie danych, Kompresja danych
|
|
|
|
empezar lección
|
|
Zapewnienie interfejsu pomiędzy użytkownikiem a siecią, Komunikacja między aplikacjami
|
|
|
|
empezar lección
|
|
zapewnienie zgodności w czasie pomiędzy nadajnikiem a odbiornikiem – aby dane były odczytywane w tych samych momentach, w jakich zostały wysłane
|
|
|
Jak uzyskać synchronizacje empezar lección
|
|
Zegar nadawcy i odbiorcy muszą pracować z tą samą częstotliwością, Odbiornik może: - odzyskać taktowanie z sygnału danych (np. metodą PLL)- być sterowany wspólnym zegarem(np. w centralach cyfrowych), frame alignment, bit sync-rozpoznanie bitów
|
|
|
|
empezar lección
|
|
to proces wymiany informacji sterujących między urządzeniami w sieci
|
|
|
|
empezar lección
|
|
- Zestawianie i rozłączanie połączeń.- Nadzór nad połączeniem (zajętość, zakończenie).- Przenoszenie informacji o błędach lub usługach dodatkowych (np. przekierowanie).- Sterowanie zasobami sieci.
|
|
|
|
empezar lección
|
|
Pulse Code Modulation-cyfrowa kodowania sygnałów analogowych (np. mowy) oraz podstawowy sposób transmisji w sieciach metoda telekomunikacyjnych. Etapy: próbkowanie itd
|
|
|
|
empezar lección
|
|
wykorzystuje szerokie pasmo do przesyłu danych. Infrastruktury telekomunikacyjnej i wykorzystywane do tego technologie np.: linia telefoniczna, kable koncentryczne, światłowód i sieci bezprzewodowe.
|
|
|
|
empezar lección
|
|
(classes of service)-to przydział priorytetów pakietom, jak szybko dany pakiet musi dotrzeć do odbiorcy. Ma to bezpośredni wpływ na QoS (Quality of service) oraz GoS (Grade of Service)
|
|
|
IP (Internet Protocol) – Tradycyjny Routing empezar lección
|
|
Jest to bezpołączeniowy protokół warstwy 3 (Sieciowej), oparty na adresowaniu logicznym (IPv4/IPv6).
|
|
|
MPLS (Multiprotocol Label Switching) empezar lección
|
|
(labels) do przesyłania pakietów bez potrzeby analizy pakietu za każdym razem przejścia przez router.(warstwa 2.5). Router E-LSR lub LER (Edge Label Switching Router) nadaje etykietę pakietowi i przechodząc przez kolejne LSR pakiet przesyłany jest dalej.
|
|
|
Mechanizm (Label Swapping) empezar lección
|
|
LER Ingress: Klasyfikacja IP → dodanie etykiety (PUSH). LSR: Ignoruje IP. Szybka podmiana etykiety wejściowej na wyjściową (SWAP) w oparciu o tablicę. LER Egress: Usunięcie etykiety (POP) → wysłanie czystego IP.
|
|
|
|
empezar lección
|
|
Transmisja danych liniami telefonicznymi (miedź). Wykorzystuje podział częstotliwości (FDM): dół pasma dla głosu, góra dla danych. ADSL: Asymetryczny (Download > Upload). Wada: Tłumienie – prędkość drastycznie spada wraz z odległością od centrali.
|
|
|
|
empezar lección
|
|
Pasywna sieć optyczna typu punkt-wielopunkt. Elementy: OLT (centrala) → Splitter (pasywny dzielnik) → ONT (klient). Działanie: Downstream: Broadcast (wszyscy dostają wszystko, filtrują swoje). Upstream:(nadawanie w przydzielonych szczelinach czasu).
|
|
|
Architektura sieci komurkowej empezar lección
|
|
User Equipment (UE) ● Telefon, korzysta z karty SIM do identyfikacji w sieci 2. Radio Access Network (RAN) ● Stacje bazowe, w 2/3G nazywane BTS/NodeB, w 4G eNodeB, a w 5G gNodeB 3. Core Network (CN) ● Centrala operatora, zarządza całą siecią
|
|
|
podział pasma sieci komórkowej empezar lección
|
|
TDD (Time Divison Duplex) Transmisja odbywa się w ustalonych slotach czasowych przeznaczonych osobno na uplink i na downlink na tej samej częstotliwości. FDD (Frequency DIvision Duplex) Podział na dwa symetryczne bloki częstotliwości,
|
|
|
|
empezar lección
|
|
Cel: Wyłącznie rozmowy głosowe (brak SMS). Technologia: Sygnał w pełni analogowy (FM). Wielodostęp: FDMA (każdy ma osobny kanał częstotliwości). Wady: Brak szyfrowania (łatwy podsłuch), brak roamingu, duże telefony
|
|
|
|
empezar lección
|
|
Przełom: Sygnał cyfrowy, karty SIM, szyfrowanie, roaming. Usługi: Głos, SMS, proste dane (GPRS). Technologia: Komutacja łączy (Circuit Switching). Wielodostęp: TDMA (podział czasu na szczeliny - rozmowa na zmianę).
|
|
|
|
empezar lección
|
|
Cel: Mobilny Internet, wideorozmowy. Technologia: HSPA (szybszy transfer). Wielodostęp: CDMA/WCDMA (kodowy). Użytkownicy nadają w tym samym czasie na szerokim paśmie, a rozróżniani są unikalnymi kodami matematycznymi
|
|
|
|
empezar lección
|
|
Architektura: All-IP (tylko pakiety). Głos przesyłany jako dane (VoLTE). Wielodostęp: OFDMA (podział pasma na setki podnośnych). Cechy: Szerokopasmowy Internet (do 1 Gb/s), niskie opóźnienia (ok. 20ms), streaming HD
|
|
|
|
empezar lección
|
|
3 cele: eMBB (duża prędkość), mMTC (masowe IoT, miliony czujników), URLLC (niezawodność, opóźnienia poniżej 1ms dla aut). Tech: Massive MIMO (dużo anten), Beamforming (kierunkowanie wiązki), Network Slicing (krojenie sieci)
|
|
|
|
empezar lección
|
|
Najstarsza technika (1G). Pasmo radiowe dzielone jest na węższe kanały częstotliwości. Każdy użytkownik otrzymuje jeden kanał na wyłączność na czas rozmowy. Jest mało efektywna (cisza też zajmuje kanał)
|
|
|
|
empezar lección
|
|
Użytkownicy korzystają z tej samej częstotliwości, ale w różnych momentach. Czas podzielony jest na szczeliny (sloty). Nadajesz tylko w swoim krótkim okienku czasowym, potem czekasz na kolejną kolej.
|
|
|
|
empezar lección
|
|
wszyscy nadają w tym samym czasie na tej samej szerokiej częstotliwości (rozpraszanie widma). Każdy sygnał jest mnożony przez unikalny kod matematyczny. Odbiornik wyławia właściwą rozmowę znając ten kod
|
|
|
|
empezar lección
|
|
Podstawa 4G i 5G. Pasmo dzielone na tysiące gęsto upakowanych podnośnych, które są ortogonalne (nie zakłócają się wzajemnie). Użytkownikowi przydziela się grupę podnośnych w zależności od potrzeb. Bardzo odporna na zaniki sygnału
|
|
|
|
empezar lección
|
|
(Wavelength Division Multiplexing)-Technika multipleksacji falowej polega na jednoczesnym przesyłaniu wielu sygnałów świetlnych o różnych długościach fal tym samym włóknem światłowodowym. Każda długość fali przenosi niezależny kanał danych.
|
|
|
|
empezar lección
|
|
Całkowitego Wewnętrznego Odbicia. Światło wpuszczone do rdzenia pod odpowiednim kątem (mniejszym niż kąt graniczny) odbija się od granicy rdzeń-płaszcz jak od lustra i "zygzakiem" wędruje na koniec przewodu.
|
|
|
Budowa włókna światłowodu empezar lección
|
|
1) Rdzeń (Core): Środek, którym biegnie światło. Ma wyższy współczynnik załamania światła ($n_1$). Płaszcz (Cladding): Otoczka rdzenia. Ma niższy współczynnik załamania światła 2.
|
|
|
|
empezar lección
|
|
Rozpraszanie Rayleigha: Fizyczna natura szkła. Fotony zderzają się z cząsteczkami w szkle. Zasada: Im krótsza fala(fiol) tym większe rozpraszanie Absorpcja: Zanieczyszczenia wodne w szkle "pożerają" światło na konkretnych długościach fali
|
|
|
|
empezar lección
|
|
I Okno (850 nm): Duże tłumienie. Tanie lasery/LED. II Okno (1310 nm): Niskie tłumienie, zerowa dyspersja, średnie dyst. III Okno (1550 nm): Najniższe tłumienie (ok. 0.2 dB/km)
|
|
|
Wzmacnianie Sygnału Optycznego empezar lección
|
|
Kiedyś używano regeneratorów O-E-O. EDFA: W pełni optyczny wzmacniacz (bez konw na I). Działa w III oknie (1550 nm). Wykorzystuje odcinek światłowodu domieszkowany Erbem oraz laser pompujący, który dostarcza energię do wzmocnienia przelatującego sygnału.
|
|
|
Redundancja w kodowaniu kanałowym empezar lección
|
|
Celowe dodanie nadmiarowych bitów do wiadomości. Nie niosą one nowej treści, ale tworzą matematyczną zależność, która pozwala odtworzyć oryginał w razie utraty części sygnału. Podstawa bezpieczeństwa danych.
|
|
|
|
empezar lección
|
|
Wstrzykiwanie dodatkowych bitów (zazwyczaj "0" po ciągu "1"), aby dane nie zostały pomylone z flagą końca ramki. Zapewnia przejrzystość transmisji i ułatwia synchronizację zegarów nadawcy i odbiorcy.
|
|
|
Kod Hamminga do korekcji błędów empezar lección
|
|
Algorytm korekcji błędów (FEC). Dodaje bity parzystości na pozycjach będących potęgami dwójki (1, 2, 4...). Każdy bit kontrolny „pilnuje” specyficznej grupy bitów. Suma błędnych kontroli wskazuje precyzyjny indeks bita, który należy negować (naprawić).
|
|
|
Czym jest SIP w technologii VoIP? empezar lección
|
|
Session Initiation Protocol to tekstowy protokół sygnalizacyjny wzorowany na HTTP. Odpowiada za zestawianie, modyfikację i kończenie sesji multimedialnych. Jest elastyczny i powszechnie stosowany w telefonii IP.
|
|
|
Czym charakteryzuje się standard H. 323? empezar lección
|
|
To binarny, złożony standard ITU-T dla wideokonferencji i VoIP. Ma architekturę scentralizowaną z Gatekeeperem. Wywodzi się z klasycznej telekomunikacji (ISDN), przez co jest trudniejszy w konfiguracji niż SIP.
|
|
|
akie są elementy architektury SIP? empezar lección
|
|
User Agent (klient), Proxy Server (pośrednik przekazujący żądania), Registrar (serwer rejestrujący lokalizację użytkowników) oraz Redirect Server.
|
|
|
Za co odpowiada Gatekeeper w systemach H. 323? empezar lección
|
|
Pełni rolę "mózgu" sieci: zarządza pasmem, autoryzuje użytkowników, tłumaczy aliasy na adresy IP oraz zapewnia kontrolę nad ruchem w strefie.
|
|
|
Jakie są klasy kodów odpowiedzi w protokole SIP? empezar lección
|
|
1xx: Informacyjne (np. 180 Ringing); 2xx: Sukces (200 OK); 3xx: Przekierowanie; 4xx: Błąd klienta (np. 404 Not Found); 5xx: Błąd serwera (503 Service Unavailable); 6xx: Błąd globalny (603 Decline). Kody oparte są na strukturze protokołu HTTP.
|
|
|
Czym jest VoIP i z czego się składa? empezar lección
|
|
Technologia przesyłu głosu przez sieci IP. Składa się z sygnalizacji (SIP/H. 323 - ustawienie sesji) oraz transportu (RTP - przesył dźwięku). Służy do taniej komunikacji multimedialnej, niezależnej od tradycyjnej infrastruktury telefonicznej.
|
|
|
Czym jest protokół RTP w kontekście VoIP? empezar lección
|
|
Real-time Transport Protocol służy do przesyłania strumieni audio/wideo w czasie rzeczywistym. Podczas gdy SIP zestawia połączenie, RTP transportuje faktyczne dane (głos). Wykorzystuje UDP, by minimalizować opóźnienia kosztem braku retransmisji.
|
|
|