término |
definición |
A function of the TCP sequence number is: To associate a chronological number with each TCP segment, allowing the receiver to properly reorder the individual segments of data empezar lección
|
|
|
|
|
A function of the TCP sequence number is: To inform the sender of the next expected chronological sequence number of the TCP segment empezar lección
|
|
|
|
|
A function of the TCP sequence number is: To reassemble IP fragments empezar lección
|
|
|
|
|
A function of the TCP sequence number is: To increment the hop count on all TCP segments empezar lección
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: HTTP empezar lección
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: DNS empezar lección
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: FTP empezar lección
|
|
|
|
|
A server port of UDP or TCP 53 is typically associated with what service?: RPC empezar lección
|
|
|
|
|
A TCP flag of RESET indicates: An intention to open a new TCP connection empezar lección
|
|
|
|
|
A TCP flag of RESET indicates: An intention to gracefully close and acknowledge the termination of both sides of the connection empezar lección
|
|
|
|
|
A TCP flag of RESET indicates: An intention to abort a TCP connection empezar lección
|
|
|
|
|
A TCP flag of RESET indicates: An intention to close the connection after all in-transit data is received empezar lección
|
|
|
|
|
A testbed is a bed that can be tested to see if it is comfortable empezar lección
|
|
|
|
|
A testbed is a platform for conducting rigorous, transparent, and replicable testing of scientific theories, computational tools and new technologies empezar lección
|
|
|
|
|
A testbed is the Spirent Test Center empezar lección
|
|
|
|
|
A testbed is a dedicated server that runs components of PlanetLab services empezar lección
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of ICMP follows the IP header empezar lección
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of UDP follows the IP header empezar lección
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of TCP follows the IP header empezar lección
|
|
|
|
|
A value of 6 in the protocol field of the IP header represents: An embedded protocol of TCP precedes the IP header empezar lección
|
|
|
|
|
Application nodes: maintain the set of network interface (e.g. eth0, wlan0) in the network node empezar lección
|
|
|
|
|
Application nodes: are often modeled as compound modules containing separate modules for queues, classes MAC, and PHY protocols empezar lección
|
|
|
|
|
Application nodes: are represented by compound modules which are connected to the network layer protocol other network interfaces in the wired case empezar lección
|
|
|
|
|
Application nodes: model the user behavior as well as the application program (e.g. browser), and the application layer protocol (e.g. HTTP) empezar lección
|
|
|
|
|
[!] ARP protocol: maps a network layer protocol address to a data link layer hardware address empezar lección
|
|
|
|
|
[!] ARP protocol: is used to provide secure connections across the Internet empezar lección
|
|
|
|
|
[!] ARP protocol: is used to resolve IP address to the corresponding Ethernt address empezar lección
|
|
|
|
|
[!] ARP protocol: is used to automatically provide IP addresses to network computers empezar lección
|
|
|
|
|
CSMA: stands for Computer Shared Medium Access empezar lección
|
|
|
|
|
CSMA: stands for Carrier Sense Multiple Access empezar lección
|
|
|
|
|
CSMA: is a protocol in which a node uses a token which gives transmission privilege on shared medium empezar lección
|
|
|
|
|
CSMA: is a protocol which a node verifies the absence of other traffic before transmitting on the shared transmission medium empezar lección
|
|
|
|
|
[!] CSMA/CA: stands for Computer Shared Medium Access with Collision Avoidance empezar lección
|
|
|
|
|
[!] CSMA/CA: stands for Carrier Sense Multiple Access with Collision Avoidance empezar lección
|
|
|
|
|
[!] CSMA/CA: is used to improve the performance of the CSMA empezar lección
|
|
|
|
|
[!] CSMA/CA: is a protocol which a node verifies the absence of other traffic before transmitting on the shred transmission medium empezar lección
|
|
|
|
|
EtherAppClient: is a module implementing the CSMA protocol empezar lección
|
|
|
|
|
EtherAppClient: is a module implementing an Ethernet application that only receives packets empezar lección
|
|
|
|
|
EtherAppClient: is a traffic generator the periodically sends messages (Ethernet frames) empezar lección
|
|
|
|
|
EtherAppClient: accepts connections from EtherAppServer on a specified port empezar lección
|
|
|
|
|
[!] EtherAppServer: is a module implementing the CSMA protocol empezar lección
|
|
|
|
|
[!] EtherAppServer: is a module implementing an Ethernet application that only receives packets empezar lección
|
|
|
|
|
[!] EtherAppServer: generates frames containing EthernetAppResp chunks empezar lección
|
|
|
|
|
[!] EtherAppServer: accepts connections on a specified port empezar lección
|
|
|
|
|
[!] INET supports: nodes mobility empezar lección
|
|
|
|
|
[!] INET supports: simulation visualization empezar lección
|
|
|
|
|
[!] INET supports: external frameworks empezar lección
|
|
|
|
|
[!] INET supports: Javascript plugins empezar lección
|
|
|
|
|
Ipv4NetworkConfigurator: supports manual routes and automatic routes empezar lección
|
|
|
|
|
Ipv4NetworkConfigurator: supports manual and automatic link configurations e.g. bandwidth, delays empezar lección
|
|
|
|
|
Ipv4NetworkConfigurator: assigns IPv4 addresses and sets up static routing for an IPv4 network empezar lección
|
|
|
|
|
Ipv4NetworkConfigurator: supports both manual and automatic address assignment empezar lección
|
|
|
|
|
[!] Ipv4RoutingTable: supports manual routes and automatic routes empezar lección
|
|
|
|
|
[!] Ipv4RoutingTable: supports manual and automatic link configurations e.g. bandwidth, delays empezar lección
|
|
|
|
|
[!] Ipv4RoutingTable: stores a routing table empezar lección
|
|
|
|
|
[!] Ipv4RoutingTable: supports both manual and automatic routes assignment empezar lección
|
|
|
|
|
Parameters applied to the simulation may be submitted in: configuration file, e.g. *ini empezar lección
|
|
|
|
|
Parameters applied to the simulation may be submitted in: topology file e.g. *ned empezar lección
|
|
|
|
|
Parameters applied to the simulation may be submitted in: in the simulation code *. cpp empezar lección
|
|
|
|
|
Parameters applied to the simulation may be submitted in: in the other way empezar lección
|
|
|
|
|
PhysicalEnvironment: arranges nodes in a physical environment empezar lección
|
|
|
|
|
PhysicalEnvironment: measures temperature of a physical environment empezar lección
|
|
|
|
|
PhysicalEnvironment: models the effect of a physical environment on radio signal propagation empezar lección
|
|
|
|
|
PhysicalEnvironment: defines a set of physical objects empezar lección
|
|
|
|
|
Results of the simulation are saved as: Arrays, lists and scalars empezar lección
|
|
|
|
|
Results of the simulation are saved as: Vectors, scalars and animations empezar lección
|
|
|
|
|
Results of the simulation are saved as: Vectors and scalars empezar lección
|
|
|
|
|
Results of the simulation are saved as: Arrays, vectors and lists empezar lección
|
|
|
|
|
Round-trip time (RTT): is the measurement of the time taken by an object to travel a distance through a medium empezar lección
|
|
|
|
|
Round-trip time (RTT): is the length of time it takes for a signal to travel in one direction empezar lección
|
|
|
|
|
Round-trip time (RTT): specifies the latency for a bit of data to travel across the network from on communication endpoint to another empezar lección
|
|
|
|
|
Round-trip time (RTT): is the amount of time it takes for a signal to be sent plus the amount of time for acknowledgement of the signal having been received empezar lección
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: LTE empezar lección
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: TCP empezar lección
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: UDP empezar lección
|
|
|
|
|
StandardHost node contains the most common Internet protocols such as: BGP empezar lección
|
|
|
|
|
TCP typically begins a session with: The three-way handshake of client to server with SYN set, the server response of SYN/ACK, and the client acknowledgement of ACK empezar lección
|
|
|
|
|
TCP typically begins a session with: The three-way handshake of server to client with SYN set, the clientresponse of SYN/ACK, and the server acknowledgement of ACK empezar lección
|
|
|
|
|
TCP typically begins a session with: TCP is not connection oriented so no handshake is required empezar lección
|
|
|
|
|
TCP typically begins a session with: A handshake consisting of the client request to the server with SYN set and a server response of a SYN empezar lección
|
|
|
|
|
TcpBasicClientApp: accepts any number of incoming TCP connections empezar lección
|
|
|
|
|
TcpBasicClientApp: sends back the messages that arrive to it empezar lección
|
|
|
|
|
TcpBasicClientApp: is a client for a generic request-response style protocol over TCP empezar lección
|
|
|
|
|
TcpBasicClientApp: communicates with a server sessions empezar lección
|
|
|
|
|
TCPSinkAPP: listens on an TCP port, and sends back each received packet to its sender empezar lección
|
|
|
|
|
TCPSinkAPP: generates traffic for a TCP application empezar lección
|
|
|
|
|
TCPSinkAPP: accepts any number of incoming TCP connections, and discard whatever arrives on empezar lección
|
|
|
|
|
TCPSinkAPP: sinks TCP packets and leaves the others (e.g. TCP packets) empezar lección
|
|
|
|
|
[!] The DUT is a: device under test empezar lección
|
|
|
|
|
[!] The DUT is a: device UDP traffic empezar lección
|
|
|
|
|
[!] The DUT is a: driver urgent transfer empezar lección
|
|
|
|
|
[!] The DUT is a: Spirent Test Center interface empezar lección
|
|
|
|
|
The components of the testbed are: experimental subsystem empezar lección
|
|
|
|
|
The components of the testbed are: comfortable mattress empezar lección
|
|
|
|
|
The components of the testbed are: monitoring subsystem empezar lección
|
|
|
|
|
The components of the testbed are: wireless subsystem empezar lección
|
|
|
|
|
The following languages are used for description of a simulation: Protel empezar lección
|
|
|
|
|
The following languages are used for description of a simulation: VHDL empezar lección
|
|
|
|
|
The following languages are used for description of a simulation: Proto-C empezar lección
|
|
|
|
|
The following languages are used for description of a simulation: C/C++ empezar lección
|
|
|
|
|
The ISO/OSI model consists of three layers. empezar lección
|
|
|
|
|
The ISO/OSI model consists of five layers. empezar lección
|
|
|
|
|
The ISO/OSI model consists of seven layers. empezar lección
|
|
|
|
|
The ISO/OSI model consists of eight layers. empezar lección
|
|
|
|
|
The slice is a: set of allocated resources distributed across PlanetLab. empezar lección
|
|
|
|
|
The slice is a: set of allocated resources on a single PlanetLab node. empezar lección
|
|
|
|
|
The slice is a: physical location where PlanetLab nodes are located. empezar lección
|
|
|
|
|
The slice is a: dedicated server that runs components of PlanetLab services. empezar lección
|
|
|
|
|
The sliver is a: set of allocated resources distributed across PlanetLab. empezar lección
|
|
|
|
|
The sliver is a: slice (set of allocated resources) running on a specific node empezar lección
|
|
|
|
|
The sliver is a: set of allocated resources on a single PlanetLab node empezar lección
|
|
|
|
|
The sliver is a: physical location where PlanetLab nodes are located. empezar lección
|
|
|
|
|
The silver is a: dedicated server that runs components of PlanetLab services. empezar lección
|
|
|
|
|
[!] The Stream Block is a: “summary” definition, it can represent a single stream on a single port, or 1000s of stream across 100s ports empezar lección
|
|
|
|
|
[!] The Stream Block is a: Spirent chassis empezar lección
|
|
|
|
|
[!] The Stream Block is a: router empezar lección
|
|
|
|
|
[!] The Stream Block is a: single stream on s single port empezar lección
|
|
|
|
|
The TCP is a |connection-oriented| protocol empezar lección
|
|
|
|
|
The TCP is a |reliable| protocol empezar lección
|
|
|
|
|
The TCP is a |both a and b| protocol empezar lección
|
|
|
|
|
The TCP is a |encypted| protocol empezar lección
|
|
|
|
|
The TCP is a |plain text| protocol empezar lección
|
|
|
|
|
The TCP is a |none of the above| protocol empezar lección
|
|
|
|
|
The TCP/IP model consists of |three| layers empezar lección
|
|
|
|
|
The TCP/IP model consists of |four| layers empezar lección
|
|
|
|
|
The TCP/IP model consists of |five| layers empezar lección
|
|
|
|
|
The TCP/IP model consists of |seven| layers empezar lección
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. ini empezar lección
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. inf empezar lección
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. txt empezar lección
|
|
|
|
|
To run the Omnet++ executable, you need an: omnetpp. vec empezar lección
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the Ethernet frame empezar lección
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the UDP header empezar lección
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the IPv4 header: the gateway in the UDP header empezar lección
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define: the destination MAC address in UDP header empezar lección
|
|
|
|
|
Using the Stream Block Editor of the Spirent Test Center we can define empezar lección
|
|
Using the Stream Block Editor of the Spirent Test Center we can define
|
|
|
UDPSink: listens on an UDP port, and sends back each received packet to its sender empezar lección
|
|
|
|
|
UDPSink: generates traffic for a UDP application empezar lección
|
|
|
|
|
UDPSink: consumes and prints packets received from the UDP module empezar lección
|
|
|
|
|
UDPSink: sinks UDP packets and leaves the other (e.g. TCP packets) empezar lección
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: A UDP reset flag set to the sender empezar lección
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: A UDP FIN flag set to the sender empezar lección
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: An ICMP port unreachable message to the sender empezar lección
|
|
|
|
|
What is a typical response from a host that receives a UDP packet on a non-listening port?: A UDP port unreachable message to the sender empezar lección
|
|
|
|
|
What is the function of a router?: It determines the entire route for an IP packet from source to destination host empezar lección
|
|
|
|
|
What is the function of a router?: It uses ARP to route the packet to the next hop empezar lección
|
|
|
|
|
What is the function of a router?: It uses DNS to route the packet to the next hop empezar lección
|
|
|
|
|
What is the function of a router?: It attempts to move the IP packet one hop closer to the destination empezar lección
|
|
|
|
|
What is the output of the Omnet++ simulation?: The simulation results are recorded into output scalar (. sca) file empezar lección
|
|
|
|
|
What is the output of the Omnet++ simulation?: The simulation results are recorded into output vector (. vec) file empezar lección
|
|
|
|
|
What is the output of the Omnet++ simulation?: The simulation results are recorded into output vector (. vec) and output scalar (. sca) files empezar lección
|
|
|
|
|
What is the output of the Omnet++ simulation?: none of the above empezar lección
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: world empezar lección
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: enterprise empezar lección
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: campus empezar lección
|
|
|
|
|
[!] Which are predefined geographical (?) scales of network topologies?: office empezar lección
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is less reliable and quicker empezar lección
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is slower, more reliable, and requires more overhead empezar lección
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is faster, more reliable, and more streamlined empezar lección
|
|
|
|
|
Which of the following best characterizes TCP versus UDP (in most cases)?: TCP is less reliable and connection-oriented empezar lección
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: TCP empezar lección
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: WiFi empezar lección
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: LTE empezar lección
|
|
|
|
|
Which topics were NOT covered by twelve pdf manuals available on the Platform?: Queuing disciplines empezar lección
|
|
|
|
|